资源类型

期刊论文 201

会议视频 5

年份

2024 2

2023 28

2022 25

2021 20

2020 13

2019 6

2018 6

2017 15

2016 6

2015 7

2014 10

2013 4

2012 6

2011 5

2010 6

2009 9

2008 8

2007 8

2006 3

2005 1

展开 ︾

关键词

2023全球十大工程成就 2

三点弯曲梁 2

压力容器技术 2

双层辉光离子渗金属 2

双库协同机制 2

双目标渐进法 2

抑爆抗爆 2

深部开采 2

生态文明发展水平 2

&alpha 1

12相整流 1

CBC-MAC模式 1

CCM模式 1

CTR模式 1

Cuk矩阵变换器 1

Fe、Co、Ru 碳化物 1

HY-2 卫星地面应用系统 1

Key technology 1

Maradbcm算法 1

展开 ︾

检索范围:

排序: 展示方式:

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layereddouble hydroxide for high-performance nonenzymatic glucose sensors

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1593-1607 doi: 10.1007/s11705-023-2348-2

摘要: With increasing emphasis on green chemistry, biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials. Herein, a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition. This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose. With the synergistic effect of three heterogeneous components, the electrode achieves outstanding glucose sensing performance, including a high sensitivity (851.4 µA·mmol−1·L·cm−2), a short response time (2.2 s), a wide linear range (two stages: 0.001−8.145 and 8.145−35.500 mmol·L−1), strong immunity to interference, outstanding intraelectrode and interelectrode reproducibility, a favorable toxicity resistance (Cl), and a good long-term stability (maintaining 86.0% of the original value after 30 d). These data are superior to those of some traditional glucose sensors using nonbiomass substrates. When determining the blood glucose level of a human serum, this electrode realizes a high recovery rate of 97.07%–98.89%, validating the potential for high-performance blood glucose sensing.

关键词: cellulose nanofibril     aerogel     nickel-cobalt layered double hydroxide     polypyrrole     nonenzymatic glucose sensor    

Defective Nickle–Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant

Xiaoyu Li,Xiaoshu Lv,Jian Pan,Peng Chen,Huihui Peng,Yan Jiang,Haifeng Gong,Guangming Jiang,Li'an Hou,

《工程(英文)》 doi: 10.1016/j.eng.2023.06.017

摘要: Photocatalysis offers a sustainable avenue for the oxidative removal of low concentrations of NOx from the atmosphere. Layered double hydroxides (LDHs) are promising candidate photocatalysts owing to their unique layered and tunable chemical structures, and the abundant hydroxide (OH−) moieties on their surfaces that are hydroxyl radical (•OH) precursors. However, inferior charge separation and limited active sites on an LDH hinder its practical applications. Herein, we developed a facile N2H4-driven etching (et) approach that introduces dual Ni2+ and OH− vacancies (Niv and OHv) into NiFe-LDH nanosheets (referred to as NiFe-LDH-et) that facilitate improved charge-carrier separation and the formation of active Lewis acidic sites (Fe3+ and Ni2+ exposed at OHv). In contrast to inert pristine LDH, NiFe-LDH-et actively removes NO when illuminated with visible light. Specifically, Ni76Fe24-LDH-et etched in 1.50 mmol·L−1 N2H4 solution removes 32.8% of the NO from continuously flowing air (NO-feed concentration: ∼500 parts per billion (ppb)) when illuminated with visible light, thereby outperforming most reported catalysts. Experimental and theoretical data reveal that the dual vacancies promote the production of reactive oxygen species (•O2− and •OH) and the adsorption of NO on the LDH. In-situ spectroscopy revealed that NO is preferentially adsorbed at Lewis acidic sites, particularly exposed Fe3+ sites, and then converted into NO+ that is subsequently oxidized to NO3− without the formation of any of the more toxic NO2 intermediate, thereby alleviating risks associated with its production and emission.

关键词: Vacancies     Layered double hydroxide     NO     +     Photocatalysis     NO removal    

Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting

Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 537-554 doi: 10.1007/s11705-018-1719-6

摘要:

Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy productions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materials have gained increasing attentions as promising electrocatalysts for water splitting. Designing LDHs into hierarchical architectures (e.g., core-shell nanoarrays) is one of the most promising strategies to improve their electrocatalytic performances, owing to the abundant exposure of active sites. This review mainly focuses on recent progress on the synthesis of hierarchical LDH-based core-shell nanoarrays as high performance electrocatalysts for electrochemical water splitting. By classifying different nanostructured materials combined with LDHs, a number of LDH-based core-shell nanoarrays have been developed and their synthesis strategies, structural characters and electrochemical performances are rationally described. Moreover, further developments and challenges in developing promising electrocatalysts based on hierarchical nanostructured LDHs are covered from the viewpoint of fundamental research and practical applications.

关键词: layered double hydroxides (LDHs)     core-shell nanoarrays     oxygen evolution reaction (OER)     hydrogen evolution reaction (HER)     photoelectrochemical water splitting (PEC)    

Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 613-623 doi: 10.1007/s11705-017-1664-9

摘要: Carbon deposition and sintering of active components such as nano particles are great challenges for Ni-based catalysts for CO methanation to generate synthetic natural gas from syngas. Facing the challenges, bimetallic catalysts with different Fe content derived from layered double hydroxide containing Ni, Fe, Mg, Al elements were prepared by co-precipitation method. Nanoparticles of Ni-Fe alloy were supported on mixed oxides of aluminium and magnesium after calcination and reduction. The catalysts were characterized by Brunner-Emmett-Teller (BET), X-ray diffraction, hydrogen temperature programmed reduction, inductively coupled plasma, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric techniques, and their catalytic activity for CO methanation was investigated. The results show that the Ni-Fe alloy catalysts exhibit better catalytic performance than monometallic catalysts except for the Ni4Fe-red catalyst. The Ni2Fe-red catalyst shows the highest CO conversion (100% at 260–350 °C), as well as the highest CH selectivity (over 95% at 280–350 °C), owing to the formation of Ni-Fe alloy. In stability test, the Ni2Fe-red catalyst exhibits great improvement in both anti-sintering and resistance to carbon formation compared with the Ni0Fe-red catalyst. The strong interaction between Ni and Fe element in alloy and surface distribution of Fe element not only inhibits the sintering of nanoparticles but restrains the formation of Ni clusters.

关键词: methanation     layered double hydroxide     bimetal Ni-Fe alloy     sintering     carbon deposition    

Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI

Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-020-1229-x

摘要: Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. Removal process reached equilibrium within 30 min and was minimally affected by pH. Elimination of Cr(VI) was promoted by coexisting CR. Adsorption process of CR was less influenced by the presence of Cr(VI). Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.

关键词: Chromate     Dye adsorption     Simultaneous removal     Cross-linking method     Amino functionalization    

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 948-955 doi: 10.1007/s11705-020-1920-2

摘要: Cobalt hydroxide has been emerging as a promising catalyst for the electrocatalytic oxidation reactions, including the oxygen evolution reaction (OER) and glucose oxidation reaction (GOR). Herein, we prepared cobalt hydroxide nanoparticles (CoHP) and cobalt hydroxide nanosheets (CoHS) on nickel foam. In the electrocatalytic OER, CoHS shows an overpotential of 306 mV at a current density of 10 mA·cm . This is enhanced as compared with that of CoHP (367 mV at 10 mA·cm ). In addition, CoHS also exhibits an improved performance in the electrocatalytic GOR. The improved electrocatalytic performance of CoHS could be due to the higher ability of the two-dimensional nanosheets on CoHS in electron transfer. These results are useful for fabricating efficient catalysts for electrocatalytic oxidation reactions.

关键词: electrocatalytic oxidation     cobalt hydroxide     nanosheet     water     glucose    

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1367-1376 doi: 10.1007/s11705-022-2153-3

摘要: The exploration of efficient bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction is pivotal for the development of rechargeable metal–air batteries. Transition metal phosphides are emerging as promising catalyst candidates because of their superb activity and low cost. Herein, a novel metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrid was developed by a carbothermal reduction of cobalt/nickel phosphonate hybrids with different Co/Ni molar ratios. The metal phosphonate derivation method achieved an intimately coupled interaction between metal phosphides and a heteroatom-doped carbon substrate. The resultant Co2P/Ni3P@NC-0.2 enables an impressive electrocatalytic oxygen reduction reaction activity, comparable with those of state-of-the-art Pt/C catalysts in terms of onset potential (0.88 V), 4e selectivity, methanol tolerance, and long-term durability. Moreover, remarkable oxygen evolution reaction activity was also observed in alkaline conditions. The high activity is ascribed to the N-doping, abundant accessible catalytic active sites, and the synergistic effect among the components. This work not only describes a high-efficiency electrocatalyst for both oxygen reduction reaction and oxygen evolution reaction, but also highlights the application of metal phosphonate hybrids in fabricating metal phosphides with tunable structures, which is of great significance in the energy conversion field.

关键词: metal phosphonate     cobalt/nickel phosphide     N-doped carbon     oxygen electrochemistry     Zn−air battery    

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 102-115 doi: 10.1007/s11705-022-2179-6

摘要: High-performance and stable electrocatalysts are vital for the oxygen evolution reaction (OER). Herein, via a one-pot hydrothermal method, Ni/Fe/V ternary layered double hydroxides (NiFeV-LDH) derived from Ni foam are fabricated to work as highly active and durable electrocatalysts for OER. By changing the feeding ratio of Fe and V salts, the prepared ternary hydroxides were optimized. At an Fe:V ratio of 0.5:0.5, NiFeV-LDH exhibits outstanding OER activity superior to that of the binary hydroxides, requiring overpotentials of 269 and 274 mV at 50 mA·cm–2 in the linear sweep voltammetry and sampled current voltammetry measurements, respectively. Importantly, NiFeV-LDH shows extraordinary long-term stability (≥ 75 h) at an extremely high current density of 200 mA·cm–2. In contrast, the binary hydroxides present quick decay at 200 mA·cm–2 or even reduced current densities (150 and 100 mA·cm–2). The outstanding OER performance of NiFeV-LDH benefits from the synergistic effect of V and Fe while doping the third metal into bimetallic hydroxide layers: (a) Fe plays a crucial role as the active site; (b) electron-withdrawing V stabilizes the high valence state of Fe, thus accelerating the OER process; (c) V further offers great stabilization for the formed intermediate of FeOOH, thus achieving superior durability.

关键词: oxygen evolution reaction     electrocatalysts     ternary layered double hydroxides     long-term stability    

Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 937-947 doi: 10.1007/s11709-021-0754-4

摘要: This study aims to investigate hydrofracturing in double-layered soil through theoretical and experimental analysis, as multilayered soils where the difference in mechanical properties exists are generally encountered in practical engineering. First, an analytical solution for fracturing pressure in two different concentric regions of soil was presented based on the cavity expansion theory. Then, several triaxial hydraulic fracturing tests were carried out to validate the analytical solution. The comparison between the experimental and analytical results indicates the remarkable accuracy of the derived formula, and the following conclusions were also obtained. First, there is a linear relationship between the fracturing pressure and confining pressure in concentric double-layered cohesive soil. Second, when the internal-layer soil is softer than the external-layer soil, the presence of internal soil on the fracturing pressure approximately brings the weakening effect, and the greater strength distinction between the two layers, the greater the weakening effect. Third, when the internal-layer soil is harder than the external-layer soil, the existence of the internal-layer soil has a strengthening effect on the fracturing pressure regardless of the proportion of internal-layer soil. Moreover, the influence of strength distinction between the two layers on the fracturing pressure is significant when the proportion of internal-layer soil is less than half, while it’s limited when the proportion is more than half. The proposed solution is potentially useful for geotechnical problems involving aspects of cohesive soil layering in a composite formation.

关键词: hydraulic fracturing pressure     layered     cavity expansion theory     triaxial fracturing test     cohesive soil    

Photocatalytic syngas synthesis from CO

Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 99-108 doi: 10.1007/s11705-020-1947-4

摘要: The rational design of photocatalyst that can effectively reduce CO under visible light ( >400 nm), and simultaneously precise control of the products syngas (CO/H ) ratio is highly desirable for the Fischer-Tropsch reaction. In this work, we synthesized a series of CeO -decorated layered double hydroxides (LDHs, Ce- ) samples for photocatalytic CO reduction. It was found that the selectivity and productivity of CO and H from photoreduction of CO in conjunction with Ru-complex as photosensitizer performed an obvious “volcano-like” trend, with the highest point at Ce-0.15 and the CO/H ratio can be widely tunable from 1/7.7 to 1/1.3. Furthermore, compared with LDH, Ce-0.15 also drove photocatalytic CO to syngas under 600 nm irradiation. It implied that an optimum amount of CeO modifying LDH promoted the photoreduction of CO to syngas. This report gives the way to fully utilize the rare earth elements and provides a promising route to enhance the photo-response ability and charge injection efficiency of LDH-based photocatalysts in the synthesis of syngas with a tunable ratio under visible light irradiation.

关键词: visible light catalysis     CO2 conversion     layered double hydroxide     rare earth elements    

Crack evolution of soft–hard composite layered rock-like specimens with two fissures under uniaxial compression

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1372-1389 doi: 10.1007/s11709-021-0772-2

摘要: Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses (SHCLRM) containing double fissures under uniaxial compression. The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed. The characteristics of the acoustic emission source location distribution, and frequency changes of the crack evolution process were also investigated. The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures. Hard layers predominantly produce tensile cracks; soft layers produce shear cracks. The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers. The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics, and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability. This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines, as well as in roadway layout and support.

关键词: soft−hard composite layered rock mass     double cracks     crack evolution     acoustic emission     digital image correlation    

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 401-409 doi: 10.1007/s11708-017-0496-0

摘要: As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH) nanoparticles as the cathode material, nano-sized β-Ni(OH) particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH) was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH) could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH) was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH) and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

关键词: nano-suspension flow battery     β-Ni(OH)2     scanning electronic microscopy (SEM)     X-ray diffraction (XRD)     X-ray adsorption near edge structure (XANES)     extended X-ray absorption fine structure (EXAFS)    

Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 491-503 doi: 10.1007/s11705-022-2257-9

摘要: As promising electrode materials for supercapacitors, nickel-cobalt bimetallic sulfides render the advantages of abundant redox reactions and inherently high conductivity. However, in general, unsatisfactory performance of low specific capacity, low rate capability, and fast capacity loss exist in Ni–Co sulfide electrodes. Herein, we rationally regulate phosphorus-doped nickel–cobalt sulfides (P-NCS) to enhance the electrochemical performance by gas–solid phosphorization. Moreover, carbon nanotubes (CNTs) as conductive additives are added to improve the cycle stability and conductivity and form the composite P-NCS/C/CNT. According to density functional theory, more electrons near the Fermi surface of P-NCS are demonstrated notionally than those of simple CoNi2S4. Electrochemical results manifest that P-NCS/C/CNT exhibits superior electrochemical performance, e.g., high specific capacity (932.0 C∙g‒1 at 1 A∙g‒1), remarkable rate capability (capacity retention ratio of 69.1% at 20 A∙g‒1), and lower charge transfer resistance. More importantly, the flexible hybrid asymmetric supercapacitor is assembled using P-NCS/C/CNT and activated carbon, which renders an energy density of 34.875 W·h∙kg‒1 at a power density of 375 W∙kg‒1. These results show that as-prepared P-NCS/C/CNT demonstrates incredible possibility as a battery-type electrode for high-performance supercapacitors.

关键词: cobalt nickel sulfide     phosphorus-doping     hybrid supercapacitor     carbon nanotube     density functional theory    

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1460-1469 doi: 10.1007/s11705-023-2335-7

摘要: Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 μm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.

关键词: Ti3C2Tx MXene     double crosslinking     mechanical properties     EMI shielding performance    

Synthesis and electrocatalytic property of cubic and spherical nanoparticles of cobalt platinum alloys

Xiaowei TENG, Hong YANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 45-51 doi: 10.1007/s11705-009-0308-0

摘要: This paper describes the morphological control and electrocatalytic property of CoPt nanoparticles. Both cubic and spherical CoPt nanoparticles were made using cobalt carbonyl and platinum 2,4-pentanedionate under different reaction temperatures in the presence of capping reagents, which included adamantanecarboxylic acid and hexadecylamine. Effects of heterogeneous species on shape of the CoPt nanoparticles were examined by replacing cobalt carbonyl with silver acetylacetonate. Our results suggest that the formation of different shapes of CoPt particles could be attributed to the affinity between cobalt and platinum, and the effects of capping agents. The size and shape dependent electrocatalytic properties of these nanoparticles were examined based on the direct methanol oxidation reaction.

关键词: spherical     2     4-pentanedionate     adamantanecarboxylic     acetylacetonate     electrocatalytic    

标题 作者 时间 类型 操作

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layereddouble hydroxide for high-performance nonenzymatic glucose sensors

期刊论文

Defective Nickle–Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant

Xiaoyu Li,Xiaoshu Lv,Jian Pan,Peng Chen,Huihui Peng,Yan Jiang,Haifeng Gong,Guangming Jiang,Li'an Hou,

期刊论文

Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting

Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei

期刊论文

Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu

期刊论文

Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI

Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan

期刊论文

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

期刊论文

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

期刊论文

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable

期刊论文

Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil

期刊论文

Photocatalytic syngas synthesis from CO

Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song

期刊论文

Crack evolution of soft–hard composite layered rock-like specimens with two fissures under uniaxial compression

期刊论文

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

期刊论文

Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor

期刊论文

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties

期刊论文

Synthesis and electrocatalytic property of cubic and spherical nanoparticles of cobalt platinum alloys

Xiaowei TENG, Hong YANG,

期刊论文